Organic Chemistry

Reaction of fluoroalkyl-containing 1,3-dicarbonyl compounds with benzylideneacetone

Ya. V. Burgart, A. S. Fokin, I. T. Bazyl', and V. I. Saloutin*

Institute of Organic Synthesis, Ural Branch of the Russian Academy of Sciences, 20 ul. S. Kovalevskoi, 620219 Ekaterinburg, Russian Federation.

Fax: 007 (343 2) 44 0458. E-mail: fc@ios.ural.ru

The reaction of fluoroalkyl-containing 1,3-dicarbonyl compounds with benzylideneacetone with the use of pyridine or triethylamine as a catalyst gave new 3-fluoroalkyl-4-ethoxycarbonyl(acyl)-5-phenylcyclohexan-3-ol-1-ones in yields of 16-33%.

Key words: fluoroalkyl-containing 1,3-dicarbonyl compounds, benzylideneacetone, Michael condensation; cyclization; cyclohexan-3-ol-1-ones.

It is known that base-catalyzed addition to activated olefins (Michael reaction) is typical of 1,3-dicarbonyl compounds. This reaction has been well studied for nonfluorinated 1,3-ketoesters and 1,3-diketones. Data on the possible involvement of fluorinated 1,3-dicarbonyl compounds in Michael condensation are available only for the reactions of α - and γ -mono-, α , γ - and γ , γ -di-, and γ , γ -trifluoroacetoacetic esters with methyl vinyl ketone, chalcone, and acrylonitrile. These reactions yield predominantly monoaddition products along with diadducts and cyclohexenones (in the reactions of γ -monofluoro- β -ketoesters with chalcone, with the cyclization proceeding via the participation of the acyl group of ketoester).

In this work, we demonstrated that the reactions of fluorine-containing β -ketoesters (1a,b) and 1,3-diketones (1c,d) with benzylideneacetone in the presence of bases (Et₃N, C₅H₅N, or EtONa) involve monoaddition followed by cyclization at the carbonyl group that is bonded to the fluoroalkyl substituent to yield 3-fluoroalkyl-4-ethoxycarbonyl(acyl)-5-phenylcyclohexan-3-ol-1-ones 2a-d (Scheme 1).

Et₃N is the most preferable catalyst for this reaction, whereas EtONa is of little use because of very low yields (3-5%) of the products obtained in the presence of the latter catalyst.

Note the stability of cyclohexanolones obtained. These compounds do not undergo dehydration upon heating in air or *in vacuo* or upon boiling in toluene with azeotropic distillation of water.

In the 1 H and 19 F NMR spectra of product 2a in CDCl₃, sets of signals of two isomers (apparently epimers with respect to the C(4) atom, Table 1) were observed in a ratio of 4:1.

To simplify identification of the 1H NMR spectrum, we used pyridine- d_5 , which exhibits anisotropic properties. 5 Besides, the use of this solvent (as a base) leads to conversion of the mixture to one epimer. Therefore, the ^{19}F NMR spectrum in pyridine- d_5 showed only one signal of the CF_3 group, whereas in the 1H NMR spectrum, a set of signals of the ethyl fragment was observed (see Table 1).

Based on the ¹H NMR spectral data, it can be assumed that in pyridine-d₅ cyclohexanolone 2a has a chair conformation with the equatorial orientations of the phenyl, ethoxycarbonyl, and, apparently, trifluoromethyl substituents.

Table 1. Principal characteristics of compounds 2a-d

Compo- und	- Yield (%) [M.p./°C]	Found (%) Calculated			Molecular formula	IR, v/cm ⁻¹	NMR (pyridine-d ₅) ^a	
							δ ¹ H (J/Hz, Δν/Hz)	δ ¹⁹ F
		С	Н	F				
2a ^b	30 (A) 33 (B) [181— 182]			17.44 17.26	C ₁₆ H ₁₇ F ₃ O ₄	1710 (C=O); 1725 (COOEt); 3300 (OH)	0.80 (t, 3 H, Me, ${}^{3}J = 7.2$); 2.92 (m, 2 H, C(6)H _a H _e , AB system, $\Delta v = 23.0$, ${}^{2}J_{ae} = -15.0$, ${}^{3}J_{H_aH_aC(5)} = 12.0$, ${}^{3}J_{H_eH_aC(5)} = 5.0$, ${}^{4}J_{H_cH_eC(2)} = 1.1$); 3.19 (m, 2 H, 2 CH _a H _e , AB system, $\Delta v = 13.0$, 2 $J_{ae} = -14.0$, ${}^{4}J_{H_cH_eC(6)} = 1.1$); 3.80 (q, 2 H, CH ₂ O); 3.94 (d, 1 H, H _a C(4), ${}^{3}J_{H_aH_aC(5)} =$ 13.0); 4.16 (dt, 1 H, C(5)H _a , ${}^{3}J_{H_aH_aC(6)} = {}^{3}J_{H_aH_aC(4)} = 12.0$, ${}^{3}J_{H_aH_aC(6)} = 5.0$); 4.80 (br.s, 1 H, OH); 7.20 (m, 5 H, Ph)	80.2 (s, CF ₃)
2b ^b	16 (A) 21 (B) [164— 165]	47.18 47.26			C ₁₉ H ₁₇ F ₉ O ₄	1710 (C=O); 1725 (COOEt); 3330 (OH)	0.7 (t, 3 H, Me, $J = 7.1$); 3.8 (q, 2 H, CH ₂ O, $J = 7.1$); 2.6—3.5 (m, 6 H, CH, CH ₂); 5.2 (br.s, 1 H, OH); 7.3 (m, 5 H, Ph)	81.2 (m, 3 F, CF ₃); 117.04—125.4 (m, 6 F, (CF ₂) ₃)
2c	22 [171— 172]	<u>60.00</u> 60.00			C ₁₅ H ₁₅ F ₃ O ₃	1710 (C=O); 3310 (OH)	2.1 (s, 3 H, Me); 2.4—3.3 (m, 4 H, CH ₂); 3.8—4.2 (m, 2 H, CH); 5.1 (br.s, OH); 7.2—7.7 (m, 5 H, Ph)	79.4 (s, CF ₃)
2d	25 [197— 198]			15.75 15.73	C ₂₀ H ₁₇ F ₃ O ₃	1710 (C=O); 1670 (PhC=O); 3300 (OH)	2.6-3.5 (m, 4 H, CH ₂); 3.9-4.4 (m, 2 H, CH); 5.2 (br.s, OH); 7.1-7.9 (m, 10 H, Ph)	78.8 (s, CF ₃)

^a Compound 2a: ¹H NMR (CDCl₃), δ : 0.80, 0.92 (both t, 3 H, Me, ³J = 7.2 Hz); 2.52-3.64 (m, 6 H, cyclohexanone); 3.81, 3.89 (both q, 2 H, CH₂O, ³J = 7.2 Hz); 4.80, 4.91 (both br.s, 2 H, OH); 7.27-7.37 (m, 5 H, Ph). ¹⁹F NMR (CDCl₃), δ : 82.5, 82.6 (both s, CF₃).

Experimental

The IR spectra were recorded on a Specord 75 IR spectro-photometer in the range of 400—4000 cm⁻¹ (as Nujol mulls). The ¹H NMR spectra were measured on a Tesla BS-567 A

spectrometer (100 MHz) relative to SiMe₄. The ¹⁹F NMR spectra were recorded on a Tesla BS-587 spectrometer (75 Hz) relative to CFCl₃.

4-Ethoxycarbonyl-3-trifluoromethyl-5-phenylcyclobexan-3ol-1-one (2a). A. A mixture of ketoester 1a (1.85 g, 1 mmol),

^b The yields of compounds obtained according to procedures A and B are given.

benzylideneacetone (1.46 g, 1 mmol), and pyridine (6 mL) was heated at 80 °C for 4 h, cooled, poured into water (50 mL), and acidified with hydrochloric acid to pH 5. The product was extracted with chloroform (2×25 mL), precipitated with hexane, and recrystallized from *n*-butyl alcohol. Product 2a was obtained in a yield of 0.99 g (see Table 1).

B. A mixture of ketoester 1a (5.55 g, 3 mmol), Et₃N (2.2 mL, 3 mmol), and benzylideneacetone (4.38 g, 3 mmol) was heated at 70 °C for 2.5 h and then cooled. Crystals precipitated were filtered off, washed with hexane, and recrystallized from n-butyl alcohol. Product 2a was obtained in a yield of 3.27 g (see Table 1).

4-Ethoxycarbonyi-3-nonafluorobutyi-5-phenyicyclohexnn-3-ol-1-one (2b). Product 2b was prepared according to procedure A from ketoester 1b (3.34 g, 1 mmol), benzylideneacetone (1.46 g, 1 mmol), and pyridine (6 mL) in a yield of 0.81 g (see Table 1).

Product 2b was prepared according to procedure B from ketoester 1b (10.02 g, 3 mmol), Et₃N (2.2 mL, 3 mmol), and benzylideneacetone (4.38 g, 3 mmol) in a yield of 3.2 g (see Table 1).

4-Acetyl-3-trifluoromethyl-5-phenylcyclohexan-3-ol-1-one (2c). Et₃N (2.2 mL, 3 mmol) was carefully added to diketone 1c (4.42 g, 3 mmol). Then benzylideneacetone (4.38 g, 3 mmol) was added. The reaction mixture was heated at 70 °C for 5 h and kept at 20 °C for 10 h. The precipitate was filtered off, washed with hexane, and recrystallized from n-butyl alcohol. Product 2c was obtained in a yield of 1.95 g (see Table 1).

4-Beazoyl-3-trifluoromethyl-5-phenylcyclohexan-3-ol-1-one (2d). Product 2d was obtained analogously to 2c from diketone 1d (6.48 g, 3 mmol), Et₃N (2.2 mL), and benzylideneacetone (4.38 g, 3 mmol) in a yield of 2.3 g (see Table 1).

This work was financially supported by the Russian Foundation for Basic Research (Project No. 95-03-08345a).

References

- Comprehensive Organic Chemistry, Eds. D. Barton and W. D. Ollis, Pergamon Press, New York, 1979, 1, 856 pp.
- K. I. Pashkevich, V. I. Saloutin, and I. Ya. Postovskii, Usp. Khim., 1981, 50, 325 [Russ. Chem. Rev., 1981, 50 (Engl. Transl.)].
- K. I. Pashkevich and V. I. Saloutin, Usp. Khim., 1985, 54, 1997 [Russ. Chem. Rev., 1985, 54 (Engl. Transl.)].
- A. Ostaszynski, Bull. Acad. Polon. Sci., Ser. Sci. Chim., 1960, 8, 599; 615; 619.
- B. I. Ionin, B. A. Ershov, and A. I. Kol'tsov, in YaMR-spektroskopiya v organicheskoi khimii [NMR Spectroscopy in Organic Chemistry], Khimiya, Leningrad, 1983, 36 (in Russian).
- H. Günther, NMR Spectroscopy, An Introduction, Wiley, New York, 1980, 478 pp.

Received December 10, 1996